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Introduction
In accordance with BS EN 1993-1-1¹ Clause 5.2.1, either a first-order or second-
order analysis can be used to determine internal forces and moments, providing 
the criteria for the chosen method are satisfied. For first-order elastic analysis, 
the criterion requires that the factor, αcr , be greater than or equal to 10. This 
factor represents the multiplier by which the design loading would need to be 
increased to cause elastic instability in a global mode (see Equation (1)). If αcr 
falls between 3 and 10, second-order effects may be considered using an 
approximate second-order analysis. However, for structures where αcr is less 
than 3, a rigorous second-order analysis is required.

		  (1)αcr = Fcr

Fed

where 	FEd 	 is the design loading on the structure
	 Fcr 	 is the elastic critical buckling load for global instability mode 	

		  based on initial elastic stiffness
To calculate Fcr (and αcr) precisely, a linear buckling analysis is normally 

needed; however, BS EN 1993-1-1¹ introduces an approximate method to 
estimate αcr on a storey-by-storey basis within a building:   

			   (2)
αcr = HEd

VEd( ) h
δH,Ed( )

where 	HEd 	 is the total design horizontal load transferred by the storey
	 VEd 	 is the total design vertical load on the frame transferred by the 	

		  storey
	 δH,Ed 	 is the horizontal displacement at the top of storey relative to 	

		  the bottom of the storey when the frame is loaded with 		
		  horizontal loads

	 h	 is the storey height
Similar to the linear buckling analysis, the approximate method also requires 

the use of structural analysis software to calculate horizontal displacements at 
storey levels. While such software is indispensable in modern engineering 
practice, a lack of understanding of its underlying assumptions can lead to 
erroneous results. Therefore, hand calculations remain a valuable practice to 
verify software output. In this article, a simple hand method based on first 
principles is introduced to calculate αcr for unbraced frames.    

Background on elastic critical buckling load
The elastic critical buckling load, Ncr , is defined as the compressive load at 
which an elastic column will suddenly bend and buckle. 

		  (3)Ncr = π²EI
L²

where 	E 	 is the modulus of elasticity
	 I 	 is the second moment of area
	 L	 is the length
Equation (3) was derived by Leonhard Euler in 1744, writing the equations 

of equilibrium of a pin-ended column in the deformed configuration, using the 
Euler-Bernoulli beam theory, which describes the relationship between 
deflection and applied load. 

The effective length factor, K, commonly referred to as the K-factor, is a 
multiplier that enables the calculation of an artificial column length that allows 
the use of Euler’s equation to evaluate the elastic critical buckling load of a 
column with relatively general support conditions (Figure 1). This leads to the 
general form of Euler’s formula: 

		  (4)
Ncr = π²EI

(KL)²

K-factors were determined for idealised end conditions such as pinned–pinned, 
fixed–fixed, pinned–fixed, and fixed–free, and are widely available in literature. 
However, these ideal cases have limited practical value in real-world applications, 
where support conditions and stiffness distributions are more complex.

For braced frames, a conservative design approach typically assumes K=1 for 
most situations. In practice, K<1.0 can be achieved in systems with very high 
lateral stiffness, but the use of unity is often recommended for simplicity and 
safety. 

In contrast, determining appropriate K-factors for unbraced frames is more 
complex. In such cases, the K-factor can theoretically vary from 1.0 up to 
infinity, depending on the degree of rotational restraint provided by the 
surrounding frame. As a result, no universally applicable approach exists.

 One approach to determining K-factors is the alignment chart that is a well-
established graphical tool widely used by engineers. There are two nomographs 
available —one for braced frames and one for unbraced frames. The nomograph 
applicable to unbraced frames is shown in Figure 2.  

To use the nomograph, the degree of restraint at both ends of a column —
denoted as G—must first be calculated using Equation (5):

		  (5)
G = 

Σ(Ic/Lc)
ΣIb/Lb

Calculation of αcr  
for unbraced frames

In this article, Dr. Yigit Ozcelik of the Steel Construction Institute (SCI) presents a simple yet efficient hand 
method to estimate the global stability parameter, αcr , for unbraced frames. 

▸26

Figure 1: Column length (L) vs column effective buckling length (KL)

Figure 2: Alignment chart – unbraced frames
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where 	∑(Ic⁄Lc)	 is the sum of the ratio of the second moment of area to 	
			   the length of all columns connected to the joint

	 ∑(Ib⁄Lb)	 is the sum of the same ratio for all beams connected to 	
			   the joint

As an alternative to the graphical nomograph, the following closed-formed 
equation may be used to calculate K-factors for unbraced frames:

					     (6)- 

π
K( )GAGB          - 36

6(GAGB) π
K( )

π
K( )

tan 

²

= 0 

where 	GA	 is the degree of restraint at one end of the column 		
		  (see Equation (5))

	 GB	 is the degree of restraint at the other end of the column 		
		  (see Equation (5))

It is important to recognise that the alignment chart is derived from an 
elastic sidesway stability analysis of a highly idealised frame under simplified 
loading conditions. These assumptions, along with the modifications to the 
alignment chart, for unbraced frames will be explored in a forthcoming article 
by SCI. 

Worked example 1

In this example, an unbraced frame subjected to two equal vertical point loads 
acting at beam-column joints was evaluated to determine the critical vertical 
load, N, that leads to instability of the frame.  

The degree of restraint for Column AB at Point B, GB, is:
						      (7)= ( )GB = Σ Ic/Lc

Σ Ib/Lb

175 × 10⁶mm⁴ / 8m
1500 × 10⁶mm⁴ / 12m = 0.175 

B

where 	Ic 	 is the second moment of area of Column AB
	 Lc 	 is the length of Column AB
	 Ib 	 is the second moment of area of Beam BD
	 Lb 	 is the length of Beam BD
Due to the pinned base, the degree of restraint for Column AB at the column 

base (Point A), GA, is infinity.

Entering GA and GB into the alignment chart, the effective length factor for 
Column AB, KAB, is 2.058.

Using Equation (4), the elastic critical buckling load for Column AB, Ncr,AB is:
							             (8)= Ncr,AB = π ²EIc

(KABLc)²
π ² (210kN/mm²) (175 × 10⁶mm⁴)

(2.058 × 8000mm)² = 1338kN 

Accordingly, N=1338 kN.  
The unbraced frame was also analysed using MASTAN2 , a free structural 

analysis program capable of performing linear buckling analysis. The results of 
the analysis yielded a critical vertical load of N=1335 kN, which suggests the 
simple hand calculation provided an accurate prediction of the critical load, 
closely matching the numerical results.

Worked example 2
In this example, the unbraced frame considered in the Worked Example 1 was 
modified to the extent that the load distribution among the columns is 
different, while the total load acting on the frame remains the same. 

As the alignment chart used to determine the K-factor does not account for 
individual column loads, the K-factor remains unchanged. Consequently, Ncr,AB = 
1338 kN also remains unchanged.  

Given that the elastic critical buckling load for Column CD was calculated 
using the alignment chart, Ncr,CD, is equal to Ncr,AB, one might argue that 
Column CD would buckle first as it is subjected to a larger vertical load than 
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Figure 3: Worked example 1

Figure4: Effective length factor for Column AB
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Column AB. This would suggest that N should be lower than in the Worked 
Example 1. However, the linear buckling analysis of the frame with modified 
loads yielded the same critical vertical load: N=1335 kN.

This outcome can be explained by the fact that, when Column CD is onset of 
buckling, Column AB—being subjected to a smaller vertical load—still has 
reserve load-carrying capacity. This reserve capacity contributes to the overall 
stability of the frame by effectively helping Column CD to resist a larger load 
than its Ncr,CD value. This phenomenon is known as the ΣP Concept3 , which 
describes how, in sway buckling, some columns help others while others reduce 
the capacity of some, until all columns buckle together in a global sway mode. 
Therefore, it is not suitable to assess the sidesway stability of columns in 
isolation; rather, the stability of the entire storey in the sway mode must be 
evaluated.

According to the results of the linear buckling analysis, the critical vertical 
load of the frame (or storey) is 2N=2670 kN. Using this value, the effective 
length factors of Column AB and Column CD, (KAB and KCD, respectively) were 
back-calculated:   

							       (9)= KAB = π ²EIc

0.5NIc²
π ² (210kN/mm²)(175 × 10⁶mm⁴)

(0.5 × 1335kN)(8000mm)² = 2.914 

							       (10)= KCD = π ²EIc

1.5NIc²
π ² (210kN/mm²)(175 × 10⁶mm⁴)

(1.5 × 1335kN)(8000mm)² = 1.618

Notably, the K-factor determined from the alignment chart in the Worked 
Example 1 differs significantly from the values obtained in Equations (9) and 
(10). However, the elastic critical buckling load of the frame (or storey), 
Ncr,storey —calculated as the sum of the elastic critical buckling load of each 
column estimated using the alignment chart according to the ΣP concept— 
matches the result from the linear buckling analysis. This leads to an important 
conclusion: the elastic buckling load of an individual column in an unbraced 

frame determined using an alignment chart K-factor, should be interpreted not 
as the maximum load that column can support, but rather as its contribution to 
the overall storey’s buckling stiffness. Hence, Ncr,storey can be accurately 
estimated using the alignment charts even if the K-factors for individual 
columns are not accurate: 

					     (11)
Ncr,storey = Σ Ncr,i 

where 	Ncr,i 	 is the elastic critical buckling load of Column i using the 		
		  alignment chart K-factor

However, it is important to note that the restraint (or help) provided by some 
columns to others is limited by the elastic buckling resistance of other columns 
in the no-sway mode— that is, assuming K = 1.0. In other words, each column 
must be able to support its own vertical load in isolation in the no-sway mode, 
without relying on the help. It is worth mentioning that elastic buckling of a 
column (which is part of a stability system) in the no-sway mode is quite 
unlikely for orthodox frame configurations.  

Similar to the approximate method given in BS EN 1993-1-11 (see Equation 
(2)), αcr can be calculated on a storey-by-storey basis within a building:  

		  (12)
αcr = 

Ncr,storey

VEd

Conclusion
In this article, a simple hand method is presented for calculating the global 
stability parameter, αcr, of unbraced frames based on the fundamentals of the 
stability theory and effective length factors obtained from the alignment chart. 
The method allows engineers to estimate αcr without relying on structural 
analysis software.

Through two worked examples, it was shown that the elastic critical buckling 
load of a storey for global instability mode—and therefore the calculated αcr— 
remains accurate despite observing that the elastic critical buckling load of 
individual columns of the storey calculated using the alignment chart might be 
incorrect. 

The method enables accurate estimation of αcr and offers a valuable 
verification tool for engineers.  T
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Figure 4: Worked example 2


