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A view of Torsion – 
Part Three
Parts One and Two introduced the two torsion resistance mechanisms available 
to a steel I-section and described them separately. In this final Part of the series, 
Alastair Hughes discusses the interaction of the two mechanisms. 

Introduction
To begin with, a reminder: 
•	 Forget	about	‘warping’	unless	the	member	possesses	two		 	
	 flanges	
•	 The	option	exists	to	ignore	St	Venant	and	resist	torsion	by		 	
	 ‘warping’	alone
What	follows	is	for	designers	who	need	to	extract	all	available	
stiffness	and/or	resistance	from	a	conventional	I- or H-beam 
by	taking	advantage	of	both	‘warping’	and	St	Venant.	It	does	
not	apply	to	shapes	like	angles	and	tees,	whose	warping	is	
insignificant,	nor	to	hollow	sections,	whose	warping	is	either	
non-existent	(in	the	case	of	CHS)	or	disregarded.	Angles,	tees	and	
hollow	sections	are	designed	to	resist	torsion	by	St	Venant	alone.	
	 As	reassurance,	compare	the	tabulated	properties	of	178	×	203	
×	37	UKT	and	the	406	×	178	×	74	UKB	split	to	make	it.	Whereas	
It	is	just	under	half	that	of	the	parent	section	(as	the	membrane	
analogy	would	indicate),	Iw	is	less	than	a	thousandth	(and	hardly	
seems	to	warrant	a	column	in	the	table).

The problem
While	each	resistance	mechanism	is	comprehensible	enough	on	
its	own,	and	both	can	deliver	resistance	independently	of	one	
another,	the	proportions	in	which	they	share	the	burden	will	vary	
along	the	length	of	the	member	in	a	manner	which	is	obscure	to	
those	of	us	not	qualified	in	higher	mathematics.
	 Although	EN	1993-1-1	6.2.7(2)	might	give	the	impression	that	
there	are	two	kinds	of	torsional	moment,	there	is	only	one	–	but	
there	are	two	kinds	of	resistance,	and	equilibrium	demands	that	
the	sum	of	their	respective	contributions	must	equal	the	torsional	
moment TE	at	any	and	every	point	along	the	member.	Of	course	
TE	itself	may	also	vary	lengthwise,	which	adds	to	the	complexity.
	 The	mechanism	known	as	warping	is	actually	differential	
flange	bending.	Like	any	other	beam,	the	flange	is	much	more	
efficient	when	its	span/depth	ratio	is	small.	Double	the	span	
and	the	deflection	will	multiply	by	eight.	By	contrast,	St	Venant	
displacement	merely	increases	pro	rata	with	the	length.	Naturally,	
therefore,	‘warping’	can	be	expected	to	provide	most	of	the	
stiffness	and	resistance	if	the	member	is	short,	and	St	Venant	will	
assume	dominance	as	the	length	increases.	In	between,	both	
have	a	helpful	contribution	to	make	–	and	their	combined	effect	
can	improve	on	the	sum	of	their	independent	efforts.	Many	
practical	beams	occupy	this	‘in	between’	zone.	
	 Formulating	the	problem	in	general	terms	is	not	too	difficult.	
Here	it	is	on	a	stamp,	(top	of	next	column)	commemorating	the	
great	Ukrainian	engineer	S	P	Timoshenko,	who	is	the	hero	of	this	
episode	in	the	story	of	torsion.
	 The	differential	equation	on	the	stamp	is	essentially	what	
would,	in	current	symbolism,	be	expressed	as:

 TE = GItφ’	−	EIwφ’’’

	 In	words,	the	St	Venant	contribution	GItφ’	and	the	‘warping’	
contribution	EIwφ’’’	add	up	to	the	torsional	moment.	(Don’t	be	
concerned	by	the	minus	sign,	which	is	as	in	the	familiar	bending	
formula	My	=	−EIz’’.)	
 Iw ,	the	warping	constant,	was	formerly	symbolized	H.	The	
new	symbol	is	rather	regrettable,	because	this	section	property	
(whose	units	are	m6)	has	even	less	to	do	with	inertia	than	It 
[which	is,	for	a	circular	bar	(only),	numerically	the	same	as	its	
polar	moment	of	inertia].	The	‘warping’	contribution	is	equal	to	
the	shear	force	in	the	flange	(the	rate	of	change	of	its	‘warping’	
moment)	times	the	distance	between	flanges,	taken	as	(h – tf).		
The	‘warping’	moment	is	±EIf y’’	and	y = φ	(h – tf)/2,	whence	
Iw = If	(h – tf)

2/2.		If	is	the	second	moment	of	area	of	one	flange,	
btf

3/12,	and	is	not	very	different	from	Iz		/2	for	the	section	as	a	
whole.
	 The	mathematicians	need	to	be	employed	because	the	
equation	on	the	stamp	must	simultaneously	be	satisfied	from	end	
to	end	of	the	beam,	taking	account	of	any	lengthwise	variation	
of TE	,	whose	distribution	will,	in	general,	depend	not	only	on	the	
torque(s)	applied	but	also	on	the	two	kinds	of	torsional	stiffness	
in	play.

The solutions
Suffice	it	to	say	that	the	mathematical	profession	has	provided	
us	with	a	set	of	solutions	for	a	range	of	situations	encountered	in	
practice,	and	these	are	given	in	the	new	SCI	Design	Guide,	P385.	
In	P057	(the	earlier	publication),	many	of	them	were	presented	
as	graphs,	because	the	formulae	are	heavy	duty,	with	abundant	
hyperbolic	functions.	Twenty	years	on,	a	£7	pocket	calculator	
will	take	these	in	its	stride,	so	the	number	of	graphs	is	somewhat	
reduced	in	P385.	Some	graphs	are	retained,	however,	not	least	
because	they	give	a	visual	indication	of	the	interplay	between	the	
resistance	mechanisms.
	 Consider,	as	a	simple	numerical	example,	a	beam	subject	
to	point	torque	at	midspan.	Here	are	plots	of	the	variation	of	
φ	and	its	first,	second	and	third	derivatives	with	respect	to	
x.	The	torque	T	is	3.4	kNm,	the	span	is	3.46	m	and	the	beam	
is	305	×	127	×	42	UKB,	S275.	For	this	section	It	=	21.1E−8	m

4, 
Iw	=	0.0846E−6	m

6	and	(h – tf)/2	=	0.148	m.	
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Graph 1: Beam rotation
The	lateral	deflection	of	the	top	flange	is	φ	(h − tf)/2,	so	this	
graph	can	be	viewed	as	its	deflected	shape.	At	midspan,	φ	is	
0.078	rad	(4.5°)	and	deflection	is	11.5	mm.	This	might	well	be	
judged	excessive,	even	if	T	incorporates	a	partial	factor	of	1.5.

 

Graph 2: St Venant torsional moment
The	St	Venant	contribution	is	GItφ’,	so	this	graph	reflects	its	
lengthwise	variation.	At	maximum,	at	the	ends	of	the	beam,	φ’	=	
0.064	m−1.	The	peak	St	Venant	shear	stress	(Gtφ’)	is	62	MPa	at	the	
flange	face;	41	MPa	at	the	web	face.	

Graph 3: Warping moment
‘Warping’	moment	Mw	is	±EIwφ’’,	so	this	graph	takes	the	shape	
of	the	flange	bending	moment	diagram	–	the	warping	moment	
diagram.	At	midspan	Mw	peaks	at	±5.6	kNm,	a	significant	
proportion	of	the	flange’s	bending	resistance	Mpl,z,Rd	(which	is	
12.8	kNm).	

Graph 4: Warping torsional moment
The	‘warping’	contribution	to	torsional	moment	is	–EIwφ’’’,	so	this	
graph	reflects	its	lengthwise	variation	(which	mirrors	graph	2).	
Either	side	of	midspan,	the	peak	warping	shear	force	in	the	flange	
is	less	than	2	kN,	corresponding	to	a	peak	elastic	shear	stress	at	its	
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neutral	axis	of	less	than	2	MPa.	The	shear	stresses	associated	with	
warping	are,	in	themselves,	really	quite	trivial.

Member verification
Thanks	to	elastic	theory	and	higher	mathematics,	the	designer	
can	now	evaluate	all	torsionally	induced	stresses	everywhere	
along	and	around	the	beam.	But	some	head-scratching	remains.
	 Serviceability	should	normally	take	priority,	with	strength	
checked	after	deformations	have	been	judged	acceptable.	
EN	1993-1-1	6.2.7	hints	at	this	with	its	wording:	‘For	members…	
for	which	distortional	deformations	may	be	disregarded…’	which	
might	almost	be	taken	to	imply	that	if	deformations	do	command	
regard	there	is	no	need	to	verify	resistance.	In	a	purely	torsional	
design	situation,	that	might	not	be	far	from	the	truth.	But	most	
practical	beams	have	to	be	verified	for	a	combination	of	bending	
and	torsion.	
	 Elastic	verification	using	the	Von	Mises	yield	criterion	is	one	
possibility.	Identifying	each	and	every	potential	critical	point	on	
the	beam	is	easier	said	than	done,	especially	when	stresses	due	to	
regular	bending	and	shear	have	to	be	superposed.	
	 Commonly,	unacceptable	torsional	deformation	of	a	beam	will	
precede	yield	by	a	comfortable	margin.	But	there	are	exceptions;	
one	is	a	very	short	member	in	which	‘warping’	is	dominant.	
Another	is	a	beam	which	is	subject	to	a	large	amount	of	regular	
bending	plus	a	small	amount	of	torsion.	In	a	case	like	this,	the	
merest	whiff	of	torsion	could	‘fail’	the	(Class	1	or	2)	beam	if	its	
presence	made	elastic	verification	compulsory.			
	 The	Eurocode	is	an	advance	on	its	predecessor	because	it	does	
permit	plastic	verification	of	the	cross-section	in	the	normal	way.	
This	involves	downgrading	the	yield	strength	if	the	shear	force	
exceeds	half	the	plastic	shear	resistance.	The	latter	is	subject	
to	reduction	when	torsional	shear	stress	is	present	(in	the	web,	
presumably)	but	even	so	it	is	only	rarely	that	the	yield	strength,	
and	hence	bending	resistance,	of	an	I-section	will	have	to	be	
downgraded.	In	the	flanges,	shear	stresses	induced	by	torsion	do	
not	have	the	same	significance.	
	 In	practice,	for	an	I-section	whose	yield	strength	is	not	
downgraded,	it	is	only	the	flange	bending	moment	due	to	
‘warping’	that	interacts	with	regular	bending	moment.	However	

it	is	often	the	case	that	an	eccentrically	applied	gravity	load	
(which	is	responsible	for	the	torsion)	continues	to	act	vertically	
while	the	beam	rotates	at	its	point	of	attachment.	This	induces	a	
weak-direction	moment	Mz	(equal	to	φMy)	as	a	secondary	effect	
of	torsion.	So	two	regular	moments	interact	with	two	opposing	
warping	moments.	The	regular	biaxial	bending	formula,	which	
takes	no	heed	of	warping	moment,	needs	to	be	extended,	and	
P385	includes	NCCI	to	this	effect.	
	 Torsion-resisting	beams	habitually	lack	restraint	against	lateral-
torsional	buckling	(LTB).	In	this	event	the	compression	flange	
is	liable	to	fail	prematurely,	and	EN	1993-1-1	offers	a	choice	
of	complicated	formulae	to	apply,	none	of	which	takes	any	
account	of	torsion.	Fortunately,	Professor	Lindner	at	the	Technical	
University	of	Berlin	has	researched	this	interaction,	and	his	
formula	has	official	status	as	UKNA-endorsed	informative	Annex	A	
to	EN	1993-6,	the	Part	dealing	with	crane	beams.		P385	adopts	this	
formula,	not	just	for	crane	beams.

In Conclusion 
This	series	of	articles	has	aimed	to	whet	the	reader’s	appetite	for	
SCI’s	P385:	‘Design	of	Steel	Beams	in	torsion’,	the	long-awaited	
revision	of	P057.	The	emphasis	has	been	on	textbook	material	
that	Standards	and	SCI	Design	Guides	take	as	read,	but	some	of	
the	changes	have	been	previewed.	The	new	publication	covers	
the	whole	subject	in	far	greater	detail,	with	chapters	on	PFC	and	
ASB	sections	(which	are	complicated,	because	the	axis	they	twist	
about	is	not	their	centroidal	axis)	and	on	connection	design.	
Also	included	are	section	property	tables,	warping/St	Venant	
interaction	graphs	and	formulae,	advice	on	serviceability	and	a	set	
of	design	examples.	
	 As	an	afterthought,	reflect	that	it	is	rare	for	torsion	to	be	
properly	modelled	in	skeletal	analysis.	With	each	member	
represented	by	a	single	line,	only	the	St	Venant	stiffness	can	be	
input.	‘Warping’	stiffness	is	there	in	reality	but	not	in	the	model,	
and	any	incorrect	distribution	of	stiffness	is	liable	to	distort	the	
result	of	an	apparently	precise	elastic	analysis.	This	could	be	to	the	
detriment	of	some	members	of	the	framework.	Perhaps	the	poor	
torsional	performance	of	conventional	steel	sections	should	be	
viewed	less	as	a	disadvantage,	more	as	a	saving	grace.


