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A view of Torsion – 
Part Three
Parts One and Two introduced the two torsion resistance mechanisms available 
to a steel I-section and described them separately. In this final Part of the series, 
Alastair Hughes discusses the interaction of the two mechanisms. 

Introduction
To begin with, a reminder: 
•	 Forget about ‘warping’ unless the member possesses two 	 	
	 flanges 
•	 The option exists to ignore St Venant and resist torsion by 	 	
	 ‘warping’ alone
What follows is for designers who need to extract all available 
stiffness and/or resistance from a conventional I- or H-beam 
by taking advantage of both ‘warping’ and St Venant. It does 
not apply to shapes like angles and tees, whose warping is 
insignificant, nor to hollow sections, whose warping is either 
non-existent (in the case of CHS) or disregarded. Angles, tees and 
hollow sections are designed to resist torsion by St Venant alone. 
	 As reassurance, compare the tabulated properties of 178 × 203 
× 37 UKT and the 406 × 178 × 74 UKB split to make it. Whereas 
It is just under half that of the parent section (as the membrane 
analogy would indicate), Iw is less than a thousandth (and hardly 
seems to warrant a column in the table).

The problem
While each resistance mechanism is comprehensible enough on 
its own, and both can deliver resistance independently of one 
another, the proportions in which they share the burden will vary 
along the length of the member in a manner which is obscure to 
those of us not qualified in higher mathematics.
	 Although EN 1993-1-1 6.2.7(2) might give the impression that 
there are two kinds of torsional moment, there is only one – but 
there are two kinds of resistance, and equilibrium demands that 
the sum of their respective contributions must equal the torsional 
moment TE at any and every point along the member. Of course 
TE itself may also vary lengthwise, which adds to the complexity.
	 The mechanism known as warping is actually differential 
flange bending. Like any other beam, the flange is much more 
efficient when its span/depth ratio is small. Double the span 
and the deflection will multiply by eight. By contrast, St Venant 
displacement merely increases pro rata with the length. Naturally, 
therefore, ‘warping’ can be expected to provide most of the 
stiffness and resistance if the member is short, and St Venant will 
assume dominance as the length increases. In between, both 
have a helpful contribution to make – and their combined effect 
can improve on the sum of their independent efforts. Many 
practical beams occupy this ‘in between’ zone. 
	 Formulating the problem in general terms is not too difficult. 
Here it is on a stamp, (top of next column) commemorating the 
great Ukrainian engineer S P Timoshenko, who is the hero of this 
episode in the story of torsion.
￼ The differential equation on the stamp is essentially what 
would, in current symbolism, be expressed as:

	 TE = GItφ’ − EIwφ’’’

	 In words, the St Venant contribution GItφ’ and the ‘warping’ 
contribution EIwφ’’’ add up to the torsional moment. (Don’t be 
concerned by the minus sign, which is as in the familiar bending 
formula My = −EIz’’.) 
	 Iw , the warping constant, was formerly symbolized H. The 
new symbol is rather regrettable, because this section property 
(whose units are m6) has even less to do with inertia than It 
[which is, for a circular bar (only), numerically the same as its 
polar moment of inertia]. The ‘warping’ contribution is equal to 
the shear force in the flange (the rate of change of its ‘warping’ 
moment) times the distance between flanges, taken as (h – tf).  
The ‘warping’ moment is ±EIf y’’ and y = φ (h – tf)/2, whence 
Iw = If (h – tf)

2/2.  If is the second moment of area of one flange, 
btf

3/12, and is not very different from Iz  /2 for the section as a 
whole.
	 The mathematicians need to be employed because the 
equation on the stamp must simultaneously be satisfied from end 
to end of the beam, taking account of any lengthwise variation 
of TE , whose distribution will, in general, depend not only on the 
torque(s) applied but also on the two kinds of torsional stiffness 
in play.

The solutions
Suffice it to say that the mathematical profession has provided 
us with a set of solutions for a range of situations encountered in 
practice, and these are given in the new SCI Design Guide, P385. 
In P057 (the earlier publication), many of them were presented 
as graphs, because the formulae are heavy duty, with abundant 
hyperbolic functions. Twenty years on, a £7 pocket calculator 
will take these in its stride, so the number of graphs is somewhat 
reduced in P385. Some graphs are retained, however, not least 
because they give a visual indication of the interplay between the 
resistance mechanisms.
	 Consider, as a simple numerical example, a beam subject 
to point torque at midspan. Here are plots of the variation of 
φ and its first, second and third derivatives with respect to 
x. The torque T is 3.4 kNm, the span is 3.46 m and the beam 
is 305 × 127 × 42 UKB, S275. For this section It = 21.1E−8 m

4, 
Iw = 0.0846E−6 m

6 and (h – tf)/2 = 0.148 m. 
￼
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Graph 1: Beam rotation
The lateral deflection of the top flange is φ (h − tf)/2, so this 
graph can be viewed as its deflected shape. At midspan, φ is 
0.078 rad (4.5°) and deflection is 11.5 mm. This might well be 
judged excessive, even if T incorporates a partial factor of 1.5.

￼

Graph 2: St Venant torsional moment
The St Venant contribution is GItφ’, so this graph reflects its 
lengthwise variation. At maximum, at the ends of the beam, φ’ = 
0.064 m−1. The peak St Venant shear stress (Gtφ’) is 62 MPa at the 
flange face; 41 MPa at the web face. 

Graph 3: Warping moment
‘Warping’ moment Mw is ±EIwφ’’, so this graph takes the shape 
of the flange bending moment diagram – the warping moment 
diagram. At midspan Mw peaks at ±5.6 kNm, a significant 
proportion of the flange’s bending resistance Mpl,z,Rd (which is 
12.8 kNm). 

Graph 4: Warping torsional moment
The ‘warping’ contribution to torsional moment is –EIwφ’’’, so this 
graph reflects its lengthwise variation (which mirrors graph 2). 
Either side of midspan, the peak warping shear force in the flange 
is less than 2 kN, corresponding to a peak elastic shear stress at its 
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neutral axis of less than 2 MPa. The shear stresses associated with 
warping are, in themselves, really quite trivial.

Member verification
Thanks to elastic theory and higher mathematics, the designer 
can now evaluate all torsionally induced stresses everywhere 
along and around the beam. But some head-scratching remains.
	 Serviceability should normally take priority, with strength 
checked after deformations have been judged acceptable. 
EN 1993-1-1 6.2.7 hints at this with its wording: ‘For members… 
for which distortional deformations may be disregarded…’ which 
might almost be taken to imply that if deformations do command 
regard there is no need to verify resistance. In a purely torsional 
design situation, that might not be far from the truth. But most 
practical beams have to be verified for a combination of bending 
and torsion. 
	 Elastic verification using the Von Mises yield criterion is one 
possibility. Identifying each and every potential critical point on 
the beam is easier said than done, especially when stresses due to 
regular bending and shear have to be superposed. 
	 Commonly, unacceptable torsional deformation of a beam will 
precede yield by a comfortable margin. But there are exceptions; 
one is a very short member in which ‘warping’ is dominant. 
Another is a beam which is subject to a large amount of regular 
bending plus a small amount of torsion. In a case like this, the 
merest whiff of torsion could ‘fail’ the (Class 1 or 2) beam if its 
presence made elastic verification compulsory.   
	 The Eurocode is an advance on its predecessor because it does 
permit plastic verification of the cross-section in the normal way. 
This involves downgrading the yield strength if the shear force 
exceeds half the plastic shear resistance. The latter is subject 
to reduction when torsional shear stress is present (in the web, 
presumably) but even so it is only rarely that the yield strength, 
and hence bending resistance, of an I-section will have to be 
downgraded. In the flanges, shear stresses induced by torsion do 
not have the same significance. 
	 In practice, for an I-section whose yield strength is not 
downgraded, it is only the flange bending moment due to 
‘warping’ that interacts with regular bending moment. However 

it is often the case that an eccentrically applied gravity load 
(which is responsible for the torsion) continues to act vertically 
while the beam rotates at its point of attachment. This induces a 
weak-direction moment Mz (equal to φMy) as a secondary effect 
of torsion. So two regular moments interact with two opposing 
warping moments. The regular biaxial bending formula, which 
takes no heed of warping moment, needs to be extended, and 
P385 includes NCCI to this effect. 
	 Torsion-resisting beams habitually lack restraint against lateral-
torsional buckling (LTB). In this event the compression flange 
is liable to fail prematurely, and EN 1993-1-1 offers a choice 
of complicated formulae to apply, none of which takes any 
account of torsion. Fortunately, Professor Lindner at the Technical 
University of Berlin has researched this interaction, and his 
formula has official status as UKNA-endorsed informative Annex A 
to EN 1993-6, the Part dealing with crane beams.  P385 adopts this 
formula, not just for crane beams.

In Conclusion 
This series of articles has aimed to whet the reader’s appetite for 
SCI’s P385: ‘Design of Steel Beams in torsion’, the long-awaited 
revision of P057. The emphasis has been on textbook material 
that Standards and SCI Design Guides take as read, but some of 
the changes have been previewed. The new publication covers 
the whole subject in far greater detail, with chapters on PFC and 
ASB sections (which are complicated, because the axis they twist 
about is not their centroidal axis) and on connection design. 
Also included are section property tables, warping/St Venant 
interaction graphs and formulae, advice on serviceability and a set 
of design examples. 
	 As an afterthought, reflect that it is rare for torsion to be 
properly modelled in skeletal analysis. With each member 
represented by a single line, only the St Venant stiffness can be 
input. ‘Warping’ stiffness is there in reality but not in the model, 
and any incorrect distribution of stiffness is liable to distort the 
result of an apparently precise elastic analysis. This could be to the 
detriment of some members of the framework. Perhaps the poor 
torsional performance of conventional steel sections should be 
viewed less as a disadvantage, more as a saving grace.


