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A view of Torsion – Part Two
In Part One, the two mechanisms by which a member can resist torsion were introduced. 
One of them, so-called ‘warping’, can be simply understood – not as warping but as 
differential flange bending – and, on its own, simply calculated. The other, named 
after St Venant, is simple to understand for thin-walled hollow sections, but becomes 
mathematically demanding for conventional sections. In Part Two, Alastair Hughes 
describes an escape route for non-mathematicians.

The problem
Elastic torsion resistance of ‘solid’ sections is not a simple matter 
of shear flow, as in the thin-walled hollow section considered in 
Part One. The shear stress will, broadly speaking, be at its highest 
at the periphery of the cross-section and diminish towards the 
middle. To take the simplest of examples, a solid round shaft 
could be viewed as a set of nested thin-walled hollow sections in 
each of which the shear flows as previously considered – but the 
strain, and hence the stress, would be proportional to the radius; 
at the centre there might as well be a small hole and the metal 
half way out would be 25% as effective as that at the periphery – 
50% of the force per unit length at 50% of the lever arm. Without 
axisymmetry, the flow of the shear around the section will vary 
in intensity and direction according to laws of compatibility of 
strain. As with every elastic problem, there must be a unique 
solution, but in all except the simplest shapes this can only be 
arrived at by numerical methods.  It is at this point that most of us 
non-mathematicians run for cover.

The membrane (or soap film) analogy
Fortunately help is at hand. A Bavarian engineer of the early 20th 
century, Ludwig Prandtl, as an aside from establishing the study 
of fluid dynamics, recognized that the equations which govern St 
Venant shear are identical to those which control the shape of a 
pressurized soap bubble that stretches across the same outline. 
Subject only to small deflections, the mathematical equivalence 
is exact. 
 This analogy must be one of the most potent in all engineering. 
Few can make sense of a set of equations but everyone can 
visualize the form a soap bubble will take. 
 Here are the instructions. Cut the cross-section outline out 
of a thin rigid plate which is the top of an otherwise sealed box 
into which air can be pumped by something like a bicycle pump 
after the soap bubble has been stretched across the section-
shaped hole.  The characteristic of the soap film is that it has 
constant surface tension in all directions. The bubble will inflate 
in proportion to the pressure. Stop pumping as soon as the 
form is clearly visible. The volume of air under the membrane 
(above base level) is proportional to the torsional moment. The 
shear flows along the contours. Its intensity – the shear stress – 
represents the slope of the membrane.
 The pictures here are not of real soap bubbles but simulations, 
for which we are indebted to Chris Williams and Rachel Cruise 
of Bath University and their form-finding software. (They are not 
responsible for the rather vivid rendering!) The section portrayed 
is 406 × 178 UKB74.
 For an I-section, the membrane mainly takes the form of a 
cylindrical barrel between the parallel sides of the flange or web. 
The slope is obviously greatest at the outer faces and zero at 

the summit at mid-thickness (where the direction of shear flow 
reverses).  If, for example, the web is half as thick as the flange, 
constant surface tension demands that the slope at the web 
face is half what it is at the flange face. Consequently the volume 
under the membrane is, per unit length, one eighth that at the 
flange, where twice as much metal is working four times as hard. 
Only a fraction of the total torsional performance is contributed 
by the web. 
 Where the boundaries of the cross-section are not parallel, the 
form of the membrane becomes three-dimensional. At the flange 
tips, there is a tendency to span across the corners, flattening 
the membrane and resulting in some loss of effectiveness as the 
shear flow ‘cuts the corner’.  Conversely, the bubble domes up at 
the junction of flange and web, especially with a generous root 
radius, and typically the gain at the two junctions more than 
compensates for what is lost at the four flange tips. 
 Observe, in passing, how helpful the root radii are in keeping 
the bubble attached, and minimizing the stress raising effect of 
re-entrant corners. 
 The membrane analogy has, in the not so distant past, been 
used for quantitative purposes. It may seem hard to believe 
today, but people in lab coats really did blow bubbles as 
described and take precise measurements of their shape in order 
to derive torsional properties.

Hollow sections
The analogy extends to hollow sections, for which the loose 
plate cut out from within the section needs to be (i) weightless 
and (ii) constrained, as if on rails, to move only in the vertical 
direction, without rotation or translation. It rides upwards as the 
air is pressurized, so its whole area contributes to the volume 
under the bubble. In a thin walled hollow section, convexity of 
the membrane accounts for a very small proportion of the total 
resistance, and the slope, alias the shear stress, diminishes only 
slightly from outside to inside.
 A single longitudinal cut in the hollow section would, at a 
stroke, keep the interior plate attached and grounded, reducing 
the volume of air above the baseline by a factor which depends 
on the thickness but could easily be as much as 100. That’s 
another dramatic demonstration of the superiority of hollow 
sections. The volume due to membrane convexity is all that 
remains.
 As a matter of interest, the analogy is good for hollow sections 
with more than one cell (in which the detached plates may rise 
to different levels) and with varying wall thickness. In a single cell 
hollow section, the shear stress will be lower where the wall is 
thicker – the reverse of the case with open sections, but obvious, 
in both cases, with the insight provided by the membrane 
analogy. Another difference is that the walls of rectangular hollow 
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sections with h >> t are prone to torsion-induced shear buckling 
(in principle at least; few in the current range are slender enough 
to be susceptible) whereas open sections, with St Venant shear 
tugging the two sides of the element in opposite directions, are 
not.  

The sandhill analogy
There is also a sandhill analogy to represent plastic torsion. The 
sand has a constant angle of repose (alias the yield stress in shear, 
τy = fy/√3) and the volume that can be heaped on the cross-
section corresponds to the volume of air under the membrane 
(alias the torsional moment). The hollow of a hollow section 
will enforce a plateau, only marginally higher than its elastic 
counterpart. En route to full plastification, the soap bubble can 
be visualized as being pumped up into a roof-like shape which 
matches the sandhill. 
 A fascinating detour, but plastic torsion is of mainly academic 
interest – except perhaps to the designer of an expendable 
energy-absorbing structure. 

Verification of St Venant torsional resistance
With hollow sections, it is important to recognize that one 
consequence of their efficiency in resisting torsion is that virtually 

the entire volume of metal can be mobilized close to yield, so 
interaction with other effects is very direct. If utilization versus 
torsion is 50%, 50% is left to counter regular shear and bending 
effects. 
 The design torsional moment resistance of a hollow section 
is the product of St Venant torsional section modulus Wt (from 
section property tables) and fy/√3, though there is evidence that 
non-circular hollow sections cannot always achieve it under test. 
Parasitic warping effects may be to blame. It’s comforting that 
serviceability nearly always governs.
 With open sections, it is not helpful to talk of a torsional section 
modulus, and none is tabulated. For one thing, resistance is even 
less likely to govern. Nor is its verification a simple matter of 
evaluating the maximum shear stress anywhere on the surface. 
For example, St Venant shear stress on the surface of a web 
(numerically small, but additive to regular shear) gets to be 
calculated, whereas twice that stress just round the corner on the 
flange, not to mention the stress concentration at the re-entrant 
corner itself, might be overlooked.
 It is, however, premature to discuss the verification of I-sections 
before coming to terms with the lengthwise interaction between 
the St Venant and ‘warping’ resistance mechanisms.  That will be 
the subject of Part Three.
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